Semua contoh soal di bawah ini Mafia Online ambil dari soal-soal Ujian Nasional (UN). Dengan mempelajari rujukan soal di bawah ini Anda sudah punya bayangan bagaimana bentuk-bentuk soal yang keluar pada UN. Selain itu Anda juga dapat memprediksikan bentuk-bentuk soal yang akan keluar UN nantinya.
Contoh Soal 1
Perhatikan gambar di bawah ini
Besar ∠ABD yaitu ….
A. 98°
B. 105°
C. 112°
D. 119°
(UN 2008/2009)
Penyelesaian:
Untuk menjawab soal ini hal pertama yang Anda cari yaitu nilai x. Dalam hal ini ∠ABD dan ∠CBD merupakan sudut saling pelurus, maka:
∠ABD + ∠CBD = 180°
7x° + 5x° = 180°
12x° = 180°
x = 15°
∠ABD = 7x°
∠ABD = 7. 15°
∠ABD = 105°
Jadi, besar ∠ABD yaitu 105° (Jawaban B)
Contoh Soal 2
Perhatikan gambar di bawah ini
Nilai y yaitu ….
A. 24°
B. 25°
C. 26°
D. 34°
(UN 2008/2009)
Penyelesaian:
Untuk menjawab soal ini Anda harus paham konsep kekerabatan antarsudut kalau dua garis sejajar dipotong oleh garis lain. Dalam hal ini ∠CEF dan ∠EAH merupakan sudut sehadap, maka:
∠EAH = ∠CEF
∠EAH = 102°
∠EAH + ∠BAE = 180° (sudut saling berpelurus)
102°+ 3y = 180°
3y = 180° - 102°
3y = 78°
y = 26° (Jawaban B)
Contoh Soal 3
Besar pelurus sudut SQR yaitu ….
A. 101°
B. 100°
C. 95°
D. 92°
(UN 2012/2013 paket 54)
Penyelesaian:
Perhatian** soal ini merupakan soal jebakan, banyak yang mengira kalau soal tersebut menanyakan ∠SQR padahal yang diminta yaitu ∠PQS. Untuk menjawab soal ini hal pertama yang Anda cari yaitu nilai x. Dalam hal ini ∠PQS dan ∠SQR merupakan sudut saling pelurus, maka:
∠PQS + ∠SQR = 180°
(5x)° + (4x+9)° = 180°
9x° + 9 = 180°
9x° = 171°
x° = 19°
Pelurus ∠SQR = ∠PQS
Pelurus ∠SQR = (5x)°
Pelurus ∠SQR = (5.19)°
Pelurus ∠SQR = 95° (Jawaban C)
Contoh Soal 4
Perhatikan gambar berikut
Besar sudut nomor 1 yaitu 95°, dan besar sudut nomor 2 yaitu 110°. Besar sudut nomor 3 yaitu ….
A. 5°
B. 15°
C. 25°
D. 35°
(UN 2009/2010 paket 10)
Penyelesaian:
∠1 = ∠5 = 95° (sudut dalam berseberangan)
∠2 + ∠6 = 180° (saling berpelurus)
110° + ∠6 = 180°
∠6 = 70°
∠5 + ∠6 + ∠3 = 180°
95° + 70° + ∠3 = 180°
165° + ∠3 = 180°
∠3 = 15° (Jawaban B)
Contoh Soal 5
Besar ∠BCA yaitu ….
A. 70°
B. 100°
C. 110°
D. 154°
(UN 2010/2011 paket 15)
Penyelesaian:
∠ABC + ∠CBD = 180° (saling berpelurus)
∠ABC + 112° = 180°
∠ABC = 68°
∠BCA + ∠ABC + ∠BAC = 180°
∠BCA + 68° + 42° = 180°
∠BCA + 110 = 180°
∠BCA = 70° (Jawaban A)
Contoh Soal 7
Perhatikan gambar di bawah ini
Besar ∠P3 yaitu ….
A. 37°
B. 74°
C. 106°
D. 148°
(UN 2010/2011 paket 15)
Penyelesaian:
∠P2 = 74° (sudut luar berseberangan)
∠P2 + ∠P3 = 180° (saling berpelurus)
74° + ∠P3 = 180°
∠P3 = 106° (Jawaban C)
Contoh Soal 7
Besar pelurus sudut KLN yaitu ….
A. 31°
B. 72°
C. 85°
D. 155°
(UN 2012/2013 paket 1)
Penyelesaian:
Untuk menjawab soal ini hal pertama yang Anda cari yaitu nilai x. Dalam hal ini ∠KLN dan ∠MLN merupakan sudut saling pelurus, maka:
∠KLN + ∠MLN = 180°
(3x + 15)° + (2x+10)° = 180°
5x° + 25° = 180°
5x° = 155°
x° = 31°
Pelurus ∠KLN = ∠MLN
Pelurus ∠KLN = (2x+10)°
Pelurus ∠KLN = (2.31 + 10)°
Pelurus ∠KLN = 72° (Jawaban B)
Contoh Soal 8
Perhatikan gambar di bawah ini
Besar penyiku ∠SQR yaitu ….
A. 9°
B. 32°
C. 48°
D. 58°
(UN 2012/2013 paket 2)
Penyelesaian:
Perhatian** soal ini merupakan soal jebakan juga, banyak yang mengira kalau soal tersebut menanyakan ∠SQR padahal yang diminta yaitu ∠PQS. Untuk menjawab soal ini hal pertama yang Anda cari yaitu nilai x. Dalam hal ini ∠SQR dan ∠PQS merupakan sudut saling berpenyiku, maka:
∠SQR + ∠PQS = 90°
(3x + 5)° + (6x+4)° = 90°
9x° + 9° = 90°
9x° = 81°
x° = 9°
Penyiku ∠SQR = ∠PQS
Penyiku ∠SQR = (6x+4)°
Penyiku ∠SQR = (6.9 + 4)°
Penyiku ∠SQR = 58° (Jawaban D)
Contoh Soal 9
Besar pelurus ∠AOC yaitu ….
A. 32°
B. 72°
C. 96°
D. 108°
(UN 2012/2013 paket 5)
Penyelesaian:
Untuk menjawab soal ini hal pertama yang Anda cari yaitu nilai x. Dalam hal ini ∠AOC dan ∠BOC merupakan sudut saling pelurus, maka:
∠AOC + ∠BOC = 180°
(8x - 20)° + (4x+8)° = 180°
12x° - 12° = 180°
12x° = 192°
x° = 16°
Pelurus ∠AOC = ∠BOC
Pelurus ∠AOC = (4x+8)°
Pelurus ∠AOC = (4.16 + 8)°
Pelurus ∠AOC = 72° (Jawaban B)
Contoh Soal 10
Besar penyiku ∠AQC yaitu ….
A. 49°
B. 44°
C. 66°
D. 80°
(UN 2012/2013 paket 6)
Penyelesaian:
Untuk menjawab soal ini hal pertama yang Anda cari yaitu nilai x. Dalam hal ini ∠AQC dan ∠BQC merupakan sudut saling berpenyiku, maka:
∠AQC + ∠BQC = 90°
(6x + 4)° + (5x+9)° = 90°
11x° + 13° = 90°
11x° = 77°
x° = 7°
Penyiku ∠AQC = ∠BQC
Penyiku ∠AQC = (5x+9)°
Penyiku ∠AQC = (5.7 + 9)°
Penyiku ∠AQC = 44° (Jawaban B)
Demikian rujukan soal dan pembahasannya ihwal bahan garis dan sudut. Semoga artikel ini bermanfaat. Mohon maaf kalau ada kesalahan dalam postingan di atas. Salam Mafia.
Demikian rujukan soal dan pembahasannya ihwal bahan garis dan sudut. Semoga artikel ini bermanfaat. Mohon maaf kalau ada kesalahan dalam postingan di atas. Salam Mafia.
Mari berteman dengan saya
Follow my Instagram _yudha58
0 Response to "Contoh Soal Dan Pembahasan Garis Dan Sudut"
Posting Komentar