Cara Mencari Tripel Pythagoras


Sebelum Anda mencari tripel Pythagoras terlebih dahulu Anda harus paham dengan pengertian tripel Pythagoras. Apa itu tripel Pythagoras? Untuk mencari pengertian tripel Pythagoras perhatikan kelompok bilangan berikut ini.
a) 5, 12, 13
b) 14, 8, 17
c) 8, 6, 10
d) 3, 4, 6

Misalkan kelompok tiga bilangan di atas merupakan panjang sisi-sisi suatu segitiga. Masih ingatkah Anda cara memilih jenis segitiga dengan teorema Pythagoras? Nah dengan memakai teorema Pythagoras maka kita akan sanggup tentukan yang mana kumpulan bilangan tersebut yang merupakan segitiga siku-siku.
a). misalkan a = 5, b = 12 dan c = 13,  dengan mengkudaratkan sisi miring dan jumlahkan kaudrat sisi lainnya, maka diperoleh:
c2 = 132
c2 = 169
a2 + b2 = 52 + 122
a2 + b2 = 25 + 144
a2 + b2 = 169
Karena 132 = 52 + 122, maka segitiga ini termasuk segitiga siku-siku.

b). misalkan a = 14, b = 8 dan c = 17,  dengan mengkudaratkan sisi miring dan jumlahkan kaudrat sisi lainnya, maka diperoleh:
c2 = 172
c2 = 289
a2 + b2 = 142 + 82
a2 + b2 = 196 + 64
a2 + b2 = 260
Karena 172 > 82 + 172, maka segitiga ini bukan termasuk segitiga siku-siku.
c. misalkan a = 6, b = 8 dan c = 10,  dengan mengkudaratkan sisi miring dan jumlahkan kaudrat sisi lainnya, maka diperoleh:
c2 = 102
c2 = 100
a2 + b2 = 62 + 82
a2 + b2 = 36 + 64
a2 + b2 = 100
Karena 102 = 62 + 82, maka segitiga ini termasuk segitiga siku-siku.

d. misalkan a = 3, b = 4 dan c = 6,  dengan mengkudaratkan sisi miring dan jumlahkan kaudrat sisi lainnya, maka diperoleh:
c2 = 62
c2 = 36
a2 + b2 = 32 + 42
a2 + b2 = 9 + 16
a2 + b2 = 25
Karena 62 > 32 + 42, maka segitiga ini bukan termasuk segitiga siku-siku.

Dari uraian di atas tampak bahwa kelompok tiga bilangan 5, 12, 13 dan 6, 8, 10 merupakan sisi-sisi segitiga siku-siku, alasannya ialah memenuhi teorema Pythagoras. Selanjutnya, kelompok tiga bilangan tersebut disebut tripel Pythagoras.

Jadi, dari klarifikasi di atas maka sanggup ditarik kesimpulan bahwa pengertian tripel Pythagoras ialah kelompok tiga bilangan bundar kasatmata yang memenuhi kuadrat bilangan terbesar sama dengan jumlah kuadrat dua bilangan lainnya. Bagaimana caranya mencari tripel Pythagoras?

Sekarang perhatikan tabel di bawah ini.
Tabel di atas merupakan tabel cara mencari tripel Pythagoras. Dari tabel di atas sanggup ditarik kesimpulan untuk mencari tripel Pythagoras sanggup dicari dengan rumus:
(a2 – b2), 2ab, (a2 + b2)
dengan a > b dan a, b merupakan bilangan bundar positif.

Contoh Soal
Pada segitiga ABC diketahui AB = 10 cm, BC = 24 cm, dan AC = 26 cm. Tunjukkan bahwa ABC siku-siku dan di titik manakah ABC siku-siku?

Penyelesaian:
Untuk menunjukan apakah ABC siku-siku sanggup dipakai teorema Pythagoras, yakni:
AC2 = 262
AC2 = 676
AB2 + BC2 = 102 + 242
AB2 + BC2 = 100 + 576
AB2 + BC2 = 676
Karena AC2 = AB2 + BC2, maka ABC termasuk segitiga siku-siku. Jika digambarkan menyerupai gambar di bawah ini.
Berdasarkan gambar di atas maka ABC siku-siku di titik B.

Demikianlah postingan Mafia Online wacana cara mencari tripel Pythagoras. Mohon maaf kalau ada kata-kata atau perhitungan yang salah dalam postingan di atas. Jika ada permasalahan mengenai pembahasan di atas silahkan tanyakan di kolom komentar. Salam Mafia.

Sumber http://mafia.mafiaol.com

Mari berteman dengan saya

Follow my Instagram _yudha58

Subscribe to receive free email updates:

Related Posts :

0 Response to "Cara Mencari Tripel Pythagoras"

Posting Komentar