Penerapan Sistem Persamaan Linear Dalam Soal Cerita

Banyak sekali permasalahan dalam kehidupan sehari-hari yang sanggup diselesaikan perhitungannya dengan memakai sistem persamaan linear dua variabel (SPLDV). Biasanya permasalahan tersebut disajikan dalam bentuk soal cerita.

Nah untuk memperoleh penyelesaiannya, ada beberapa tahapan yang Anda harus dilakukan. Adapun langkah-langkah harus dilakukan dalam menuntaskan soal dongeng sebagai berikut: 1). Mengubah kalimat-kalimat pada soal dongeng menjadi beberapa kalimat matematika (model matematika), sehingga membentuk sistem persamaan linear dua variabel; 2). Menyelesaikan sistem persamaan linear dua variabel; dan  3). Menggunakan penyelesaian yang diperoleh untuk menjawab pertanyaan pada soal cerita.

Untuk pola penerapan dalam bentuk soal dongeng silahkan simak beberapa pola soal di bawah ini.

Contoh Soal 1
Asep membeli 2 kg mangga dan 1 kg apel dan ia harus membayar Rp15.000,00, sedangkan Intan membeli 1 kg mangga dan 2 kg apel dengan harga Rp18.000,00. Berapakah harga 5 kg mangga dan 3 kg apel?
Penyelesaian:
Kita misalkan harga 1 kg mangga = x dan harga 1 kg apel = y, maka:
2x + y = 15000
x + 2y = 18000
Selanjutnya, selesaikan dengan memakai salah satu metode penyelesaian, contohnya dengan metode cepat, maka:
=> y = (2 . 18000 – 15000.1)/(2.2 – 1.1)
=> y = (36000 – 15000)/(4 – 1)
=> y = 21000/3
=> y = 7000
Substitusi nilai y = 7000 ke persamaan 2x + y = 15000, maka:
=> 2x + y = 15000
=> 2x + 7000 = 15000
=> 2x = 8000
=> x = 4000
Dengan demikian, harga 1 kg mangga ialah Rp4.000,00 dan harga 1 kg apel ialah Rp7.000,00.

Harga 5 kg mangga dan 3 kg apel adalah:
= 5x + 3y
= 5.4000 + 3.7000
= 20000 + 21000
= 41000
Jadi, harga 5 kg mangga dan 3 kg apel ialah Rp 41.000,00

Contoh Soal 2
Selisih umur seorang ayah dan anak perempuannya ialah 26 tahun, sedangkan lima tahun yang kemudian jumlah umur keduanya 34 tahun. Hitunglah umur ayah dan anak perempuannya dua tahun yang akan datang.

Penyelesaian:
Kita misalkan umur ayah = x dan umur anak = y, maka:
x – y = 26
(x – 5) + (y – 5) = 34 => x + y = 44
Selanjutnya, selesaikan dengan memakai salah satu metode penyelesaian, contohnya dengan metode cepat, maka:
=> y = (1 . 44 – 26 . 1)/(1 . 1 – 1 . (– 1))
=> y = 18/2
=> y = 9
Substitusi nilai y = 9 ke persamaan x – y = 26, maka:
=> x – y = 26
=> x – 9 = 26
=> x = 26 + 9
=> x = 35
Dengan demikian, umur ayah kini ialah 35 tahun dan umur anak wanita kini ialah 9 tahun.  Jadi, umur ayah dan umur anak dua tahun yang akan tiba ialah 37 tahun dan 11 tahun

Contoh Soal 3
Asti dan Anton bekerja pada sebuah perusahaan sepatu. Asti sanggup menciptakan tiga pasang sepatu setiap jam dan Anton sanggup menciptakan empat pasang sepatu setiap jam. Jumlah jam bekerja Asti dan Anton 16 jam sehari, dengan banyak sepatu yang sanggup dibentuk 55 pasang. Jika banyaknya jam bekerja keduanya tidak sama, tentukan usang bekerja Asti dan Anton.

Penyelesaian:
Kita misalkan usang kerja Asti = x dan usang kerja Anton = y, maka:
x + y = 16
3x + 4y = 55
Selanjutnya, selesaikan dengan memakai salah satu metode penyelesaian, contohnya dengan metode cepat, maka:
=> y = (1 . 55 – 16 . 3)/(1 . 4 – 1 . 3)
=> y = (55 – 48)/(4 – 2)
=> y = 7
Substitusi nilai y = 7 ke persamaan x + y = 16, maka:
=> x + y = 16
=> x + 7 = 16
=> x = 16 – 7
=> x = 9
Dengan demikian, usang bekerja Asti ialah 9 jam dan Anton ialah 7 jam.

Contoh Soal 4
Sebuah toko kelontong menjual dua jenis beras sebanyak 50 kg. Harga 1 kg beras jenis I ialah Rp 6.000,00 dan jenis II ialah Rp 6.200,00/kg. Jika harga beras seluruhnya Rp 306.000,00 maka tentukan jumlah beras jenis I dan beras jenis II yang dijual.

Penyelesaian:
Kita misalkan jumlah beras jenis I = x dan jumlah beras jenis I = y, maka:
x + y = 50
6000x + 6200y = 306000
Selanjutnya, selesaikan dengan memakai salah satu metode penyelesaian, contohnya dengan metode cepat, maka:
=> y = (1 . 306000 – 50 . 6000)/(1 . 6200 – 1 . 6000)
=> y = (306000 – 300000)/(6200 – 6000)
=> y = 6000/200
=> y = 30
Substitusi nilai y = 30 ke persamaan x + y = 50, maka:
=> x + y = 50
=> x + 30 = 50
=> x = 50 – 30
=> x = 20
Dengan demikian, jumlah beras jenis I dan beras jenis II yang dijual ialah 20 kg dan 30 kg.

Contoh Soal 5
Jumlah panjang dan lebar suatu persegi panjang ialah 32 cm, sedangkan luasnya 240 cm2. Tentukan (a) panjang dan lebarnya, (b) kelilingnya, dan (c) panjang diagonal persegi panjang.

Penyelesaian:
Kita misalkan panjang = x dan lebar = y, maka:
x + y = 32 => x = 32 – y
x . y = 240
Selanjutnya, selesaikan dengan memakai metode substitusi, maka:
=> x . y = 240
=> (32 – y) . y = 240
=> 32y – y2 = 240
=> – y+ 32y – 240 = 0 (kalikan dengan –1)
=> y2 – 32y + 240 = 0
=> (y – 20)(y – 12) = 0
=> y1 = 20 dan y2 = 12

Substitusi nilai y = 20 ke persamaan x + y = 32, maka:
=> x + y = 32
=> x + 20 = 32
=> x = 32 – 20
=> x = 12 (tidak mungkin panjang lebih kecil dari lebar persegi panjang)

Substitusi nilai y = 12 ke persamaan x + y = 32, maka:
=> x + y = 32
=> x + 12 = 32
=> x = 32 – 12
=> x = 20 (memenuhi)
(a) panjang dan lebarnya ialah 20 cm dan 12 cm
(b) keliling persegi panjang dirumuskan:
K = 2(p + l)
K = 2( x + y)
K = 2(20 cm + 12 cm)
K = 64 cm
(c) panjang diagonal (Pd) persegi panjang dirumuskan:
Pd = √(x2 + y2)
Pd = √(202 + 122)
Pd = √(400 + 144)
Pd = √544
Pd = √(16 . 34)
Pd = 4√34 cm

Demikianlah pembahasan mengenai penerapan sistem persamaan linier dua variabel dalam menyelesiakan soal-soal dongeng dalam kehidupan sehari-hari. Mohon maaf kalau ada kata-kata atau perhitungan yang salah dalam postingan di atas. Jika ada permasalahan mengenai pembahasan di atas silahkan tanyakan di kolom komentar. Salam Mafia.

Sumber http://mafia.mafiaol.com

Mari berteman dengan saya

Follow my Instagram _yudha58

Subscribe to receive free email updates:

Related Posts :

0 Response to "Penerapan Sistem Persamaan Linear Dalam Soal Cerita"

Posting Komentar