Metode Eliminasi Menuntaskan Sistem Persamaan Linear Dua Variabel


Sebelumnya Mafia Online sudah membahas ihwal metode grafik untuk mencari himpunan penyelesaian sistem persamaaan linear dua variabel. Metode grafik mempunyai kelemahan dalam mencari himpunan penyelesaian suatu sistem persamaan linear dua variabel. Apa kelemahan dari metode grafik? Untuk mengatasi kekurangan atau kelemahan tersebut maka ada metode alternatif lainnya yang dapat Anda gunakan yakni metode eliminasi. Apa itu metode eliminasi?
Metode eliminasi merupakan suatu metode yang dipakai untuk memecahkan atau mencari himpunan penyelesaian suatu sistem persamaan linear dua variabel dengan cara menghilangkan (mengeliminasi) salah satu variabelnya. Jika variabelnya x dan y, untuk memilih variabel x kita harus mengeliminasi variabel y terlebih dahulu, atau sebaliknya, bila ingin mencari variabel y maka kita harus menghilangkan variabel x terlebih dahulu.

Perlu diingat, untuk mengeliminasi suatu variabel harus variabel tersebut mempunyai koefisien yang sama. Makara kalau koefisien variabelnya belum sama maka terlebih dahulu menyamakan koefisiennya dengan cara mengalikan atau membaginya. Kemudian gres dapat memilih variabel yang lain yang akan ditentukan. Makara dalam metode eliminasi anda memerlukan dua kali mengeliminasi variabel. Agar kalian lebih gampang memahaminya, perhatikan teladan soal berikut.

Contoh Soal
Tentukan himpunan penyelesaian sistem persamaan berikut dengan memakai metode eliminasi, kalau x dan y variabel pada himpunan bilangan real.
1. x + y = 1 dan x + 5y = 5
2. 3x + 2y = 12 dan 2x – y = 8
3. 2x + y = 5 dan 3x – 2y = 4
4. 3x + 2y = 12 dan 2x + 3y = 18
5. x + y = 12 dan 3x – y = 4

Penyelesaian:
1. x + y = 1 dan x + 5y = 5
Langkah I (eliminasi variabel y)
Untuk mengeliminasi variabel y, ingat koefisien y harus sama, sehingga persaman x + y = 1 dikalikan 5 dan persamaan x + 5y = 5 dikalikan 1, maka:
x + y = 1     │× 5 =>5x + 5y = 5
x + 5y = 5   │× 1 => x + 5y = 5

5x + 5y = 5
x + 5y = 5
--------------- 
4x + 0 = 0
x = 0

Langkah II (eliminasi variabel x)
Sama menyerupai langkah I, tidak perlu menyamakan koefisien untuk mengeliminasi variabel x sebab koefisiennya sudah sama, maka:
x + y = 1
x + 5y = 5
--------------- 
0 + –4y = –4
y = 1
Jadi, himpunan penyelesaiannya yakni {(0, 1)}.

2. 3x + 2y = 12 dan 2x – y = 8
Langkah I (eliminasi variabel y)
Untuk mengeliminasi variabel y, ingat koefisien y harus sama, sehingga persaman 3x + 2y = 12 dikalikan 1 dan persamaan 2x – y = 8 dikalikan 2, maka:
3x + 2y = 12        │× 1 =>3x + 2y = 12
2x – y = 8            │× 2 =>4x – 2y = 16

3x + 2y = 12
4x – 2y = 16
---------------  +
7x + 0 = 28
x = 28/7
x = 4

Langkah II (eliminasi variabel x)
Untuk mengeliminasi variabel x, ingat koefisien x harus sama, sehingga persaman 3x + 2y = 12 dikalikan 2 dan persamaan 2x – y = 8 dikalikan 3, maka:
3x + 2y = 12        │× 2 =>6x + 4y = 24
2x – y = 8            │× 3 =>6x – 3y = 24

6x + 4y = 24
6x – 3y = 24
--------------- 
0 + 7y = 0
y = 0/7
y = 0
Jadi, himpunan penyelesaiannya yakni {(4, 0)}

3. 2x + y = 5 dan 3x – 2y = 4
Langkah I (eliminasi variabel y)
Untuk mengeliminasi variabel y, ingat koefisien y harus sama, sehingga persaman 2x + y = 5 dikalikan 2 dan persamaan 3x – 2y = 4 dikalikan 1, maka:
2x + y = 5  │× 2 =>4x + 2y = 10
3x – 2y = 4          │× 1 =>3x – 2y = 4

4x + 2y = 10
3x – 2y = 4
---------------  +
7x + 0 = 14
x = 14/7
x = 2

Langkah II (eliminasi variabel x)
Untuk mengeliminasi variabel x, ingat koefisien x harus sama, sehingga persaman 2x + y = 5 dikalikan 3 dan persamaan 3x – 2y = 4 dikalikan 2, maka:
2x + y = 5  │× 3 =>6x + 3y = 15
3x – 2y = 4          │× 2 =>6x – 4y = 8

6x + 3y = 15
6x – 4y = 8
--------------- 
0 + 7y = 7
y = 7/7
y = 1
Jadi, himpunan penyelesaiannya yakni {(2, 1)}

4. 3x + 2y = 12 dan 2x + 3y = 18
Langkah I (eliminasi variabel y)
Untuk mengeliminasi variabel y, ingat koefisien y harus sama, sehingga persaman 3x + 2y = 12 dikalikan 3 dan persamaan 2x + 3y = 18 dikalikan 2, maka:
3x + 2y = 12│× 3 =>9x + 6y = 36
2x + 3y = 18│× 2 =>4x + 6y = 36

9x + 6y = 36
4x + 6y = 36
--------------- 
5x + 0 = 0
x = 0/5
x = 0

Langkah II (eliminasi variabel x)
Untuk mengeliminasi variabel x, ingat koefisien x harus sama, sehingga persaman 3x + 2y = 12 dikalikan 2 dan persamaan 2x + 3y = 18 dikalikan 3, maka:
3x + 2y = 12│× 2 =>6x + 4y = 24
2x + 3y = 18│× 3 =>6x + 9y = 54

6x + 4y = 24
6x + 9y = 54
--------------- 
0  – 5y = – 30
y = – 30/(– 5)
y = 6
Jadi, himpunan penyelesaiannya yakni {(0, 6)}

5. x + y = 12 dan 3x – y = 4
Langkah I (eliminasi variabel y)
Untuk mengeliminasi variabel y, tidak perlu menyamakan koefisien sebab sudah sama, maka:
 x  +  y = 12
3x – y = 4
---------------  +
4x + 0 = 16
x = 16/4
x = 4

Langkah II (eliminasi variabel x)
Untuk mengeliminasi variabel x, ingat koefisien x harus sama, sehingga persaman x + y = 12 dikalikan 3 dan persamaan 3x – y = 4 dikalikan 1, maka:
x + y = 12   │× 3 =>3x + 3y = 36
3x – y = 4  │× 1 =>3x – y = 4

3x + 3y = 36
3x –  y  = 4
--------------- 
0 + 4y = 32
y = 32/4
y = 8
Jadi, himpunan penyelesaiannya yakni {(4, 8)}

Bagaimana? Masih bingung? Silahkan tanyakan kesulitan Anda pada kolom komentar. Jika metode di atas masih mengalami kesulitan silahkan coba metode berikutnya yakni metode substitusi.

Demikianlah pembahasan mengenai penyelesaian persamaan linier dua variabel dengan metode eliminasi. Mohon maaf kalau ada kata-kata atau perhitungan yang salah dalam postingan di atas. Salam Mafia.

Sumber http://mafia.mafiaol.com

Mari berteman dengan saya

Follow my Instagram _yudha58

Subscribe to receive free email updates:

0 Response to "Metode Eliminasi Menuntaskan Sistem Persamaan Linear Dua Variabel"

Posting Komentar